Stroke-Based Semi-automatic Region of Interest Detection Algorithm for In-Situ Painting Recognition
نویسندگان
چکیده
In the case of illumination and view direction changes, the ability to accurately detect the Regions of Interest (ROI) is important for robust recognition. In this paper, we propose a stroke-based semi-automatic ROI detection algorithm using adaptive thresholding and a Hough-transform method for in-situ painting recognition. The proposed algorithm handles both simple and complicated texture painting cases by adaptively finding the threshold. It provides dominant edges by using the determined threshold, thereby enabling the Hough-transform method to succeed. Next, the proposed algorithm is easy to learn, as it only requires minimal participation from the user to draw a diagonal line from one end of the ROI to the other. Even though it requires a stroke to specify two vertex searching regions, it detects unspecified vertices by estimating probable vertex positions calculated by selecting appropriate lines comprising the predetected vertices. In this way, it accurately (1.16 error pixels) detects the painting region, even though a user sees the painting from the flank and gives inaccurate (4.53 error pixels) input points. Finally, the proposed algorithm provides for a fast processing time on mobile devices by adopting the Local Binary Pattern (LBP) method and normalizing the size of the detected ROI; the ROI image becomes smaller in terms of general code format for recognition, while preserving a high recognition accuracy (99.51%). As such, it is expected that this work can be used for a mobile gallery viewing system.1
منابع مشابه
Integration of Visible Image and LIDAR Altimetric Data for Semi-Automatic Detection and Measuring the Boundari of Features
This paper presents a new method for detecting the features using LiDAR data and visible images. The proposed features detection algorithm has the lowest dependency on region and the type of sensor used for imaging, and about any input LiDAR and image data, including visible bands (red, green and blue) with high spatial resolution, identify features with acceptable accuracy. In the proposed app...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملReducing Light Change Effects in Automatic Road Detection
Automatic road extraction from aerial images can be very helpful in traffic control and vehicle guidance systems. Most of the road detection approaches are based on image segmentation algorithms. Color-based segmentation is very sensitive to light changes and consequently the change of weather condition affects the recognition rate of road detection systems. In order to reduce the light change ...
متن کامل